- Home
- Standard 11
- Mathematics
Let $a = lm\left( {\frac{{1 + {z^2}}}{{2iz}}} \right)$, where $z$ is any non-zero complex number. The set $A = \{ a:\left| z \right| = 1\,and\,z \ne \pm 1\} $ is equal to
$\left( { - 1,1} \right)$
$\left[ { - 1,1} \right]$
$\left[ {0,1} \right)$
$\left( { - 1,0} \right]$
Solution
Let $z=x+i y \Rightarrow z^{2}=x^{2}-y^{2}+2 i x y$
Now,
$\frac{{1 + {z^2}}}{{2iz}} = $ ${ = \frac{{1 + {x^2} – {y^2} + 2ixy}}{{2i(x + iy)}}}$ ${ = \frac{{\left( {{x^2} – {y^2} + 1} \right) + 2ixy}}{{2ix – 2y}}}$
$ = \frac{{\left( {{x^2} – {y^2} + 1} \right) + 2ixy}}{{ – 2y + 2x}} \times \frac{{ – 2y – 2ix}}{{ – 2y – 2ix}}$
$ = \frac{{y\left( {{x^2} + {y^2} – 1} \right) + x\left( {{x^2} + {y^2} + 1} \right)i}}{{2\left( {{x^2} + {y^2}} \right)}}$
$a = \frac{{x\left( {{x^2} + {y^2} + 1} \right)}}{{2\left( {{x^2} + {y^2}} \right)}}$
Since, $|z|\,\, = \,1\, \Rightarrow \,\sqrt {{x^2}\, + \,{y^2}} \, = \,1$
$ \Rightarrow \,{x^2}\, + \,{y^2}\, = \,1$
$\therefore \,\,a\,\, = \frac{{x(1 + 1)}}{{2 \times 1}} = x$
Also ${\text{z}} \ne {\text{1}} \Rightarrow {\text{x + iy}} \ne {\text{1}}$
$\therefore A = ( – 1,1)$
Similar Questions
Let $z$ be complex number satisfying $|z|^3+2 z^2+4 z-8=0$, where $\bar{z}$ denotes the complex conjugate of $z$. Let the imaginary part of $z$ be nonzero.
Match each entry in List-$I$ to the correct entries in List-$II$.
List-$I$ | List-$II$ |
($P$) $|z|^2$ is equal to | ($1$) $12$ |
($Q$) $|z-\bar{z}|^2$ is equal to | ($2$) $4$ |
($R$) $|z|^2+|z+\bar{z}|^2$ is equal to | ($3$) $8$ |
($S$) $|z+1|^2$ is equal to | ($4$) $10$ |
($5$) $7$ |
The correct option is: